Semi-Supervised Learning via Offline Pseudolabel
Generation and Consistency Regularization

Mohamad Qadri Maggie Collier
mgqadri@andrew.cmu.edu macollie @andrew.cmu.edu

1 Introduction

Semi-supervised learning (SSL) allows the training of machine learning models on a small amount of
labeled data and a large amount of unlabeled data with the goal of circumventing the need of labeling
entire datasets, which is often a time-consuming and error-prone process. One approach in SSL is
self-training in which a network is trained in a fully-supervised fashion with the labeled examples
and then retrained on its own raw predictions of the unlabeled examples. However, training on both
the labeled data and unlabeled data without any further pseudolabel quality inspection sometimes
does not improve performance relative to training with only the labeled portion of the dataset. One
way this problem can be addressed is to investigate how pseudolabels are generated, selected, and/or
modified. To explore this idea, this work uses several SSL aproaches which use different methods in
pseudolabel generation for an image classification task. In addition, this work proposes a method of
pseudolabel selection that uses the confidence in a teacher network’s prediction on unlabeled data
to determine if the pseudolabeled sample should be included in the next training iteration. With
these confidence metrics, the approach is shown to perform better than the baseline, indicating that
pseudolabel selection via confidence metrics may be a compelling strategy worth further investigation.
Project code available at https://github.com/mqadri93/semi-supervised-training

2 Data

This project is a proof of concept; therefore, two benchmarked image classification datasets were
selected. CIFAR-10, which includes 60,000 32 x 32 images: 10,000 test images and 50,000 training
images labeled with one of ten classes. In our experiments, different subsets from the training dataset
were selected to train a fully-supervised network and disregard the labels for all remaining samples in
the training dataset. Experiments were conducted on 3 subsets (splits) of the training set: 500, 2,000,
and 5,000 labeled examples.

Tests were also done on STL-10, which is a dataset used as a benchmark for unsupervised and semi-
supervised approaches. It contains 10 classes, and the images are of a higher resolution (96 x 96)
than in CIFAR-10. STL-10 contains 500 training images (10 pre-defined folds) for a total of 5,000
training samples, 800 test images per class, and 100,000 unlabeled images for unsupervised learning
and semi-supervised training.

3 Background

In the midway report, a baseline had been imple- Taple 1: Previous results on CIFAR-10.
mented on CIFAR-10, and the upper and lower

bounds on the testing accuracy were established Method Test Accuracy (%)

in the case that only 10% of CIFAR-10’s training -

set is used as labeled data. (ResNet 18 used forall ~ Supervised (50,000) 90.96
experiments.) Through supervised learning on all Supervised (5,000) 76.49
50,000 training samples in CIFAR-10, the upper Raw Prediction 79.43

bound was found to be approximately 90.96% (as
shown in Table[T)). Supervised learning on 10% of CIFAR-10’s training set established the lower
bound to be 76.49%.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

To motivate this work, an approach based on [1]] was implemented on CIFAR-10, in which 10% of
the training set was considered labeled. After excluding the portion of [[1] that injects noise into the
data, the implemented approach simply takes the teacher’s raw predictions as the pseudolabels. The
“Raw Prediction" row of Table [I|demonstrates that this strategy barely improves the testing accuracy
above the lower bound, indicating that the teacher’s raw predictions are not informative enough to
boost performance relative to the lower bound. This outcome motivated further investigation into
how these raw predictions can be modified or used to produce more informative pseudolabels.

4 Related Work

The literature relevant to this work mainly focuses on self-training, teacher-student approaches, and
consistency regularization. Radosavovic et al. [2] investigated omni-present learning which utilizes
all available labeled data plus large-scale unlabeled data with the goal of surpassing state-of-the-
art, fully-supervised baselines. The paper proposed generating pseudolabels using data distillation
which ensembles the results of the teacher model run on different image transformations. Such data
augmentation is known to improve the test accuracy of deep learning models indicating that they
provide rich and new information to the network [3]. Hinton et al. [4] used model distillation to
transfer the generalization ability of an ensemble of networks, initialized with different parameters,
to a smaller neural network by training the latter on soft labels taken as the geometric mean of each
neural network output in the ensemble. They demonstrated on a speech recognition task how a
distilled model trained on such aggregated soft labels performed better than a single model trained on
hard labels only. Xie et al. [1]] trains a teacher network on labeled ImageNet images. The teacher
network is then used to produce pseudolabels for a large number of unlabeled images. A student
network is trained by minimizing the cross entropy loss on labeled and unlabeled images. The process
is iterated by treating the newly trained student as the next teacher network. Noise, in the form of
dropout and data augmentation, is injected during the learning of the student which is shown to
improve the generalization and accuracy of the predictions. Mixmatch [5] is one of the state-of-the-art
approaches for semi-supervised classification tasks. It uses MixUp [6] which involves training a
network with a convex combination of examples and their labels encouraging a linear behavior in
between training examples. MixMatch generates pseudolabels by augmenting an unlabeled sample K
times, averaging the output distributions over the classes and finally sharpening the distribution to
obtain the final soft label. Sajjaddi et al. [7] uses the idea that labels should remaining unchanged
under different data augmentations and introduced a transform/consistency loss which minimizes
the L2 difference between different passes of the same (augmented) sample. Along the same line,
Laine et al. [8] uses a similar loss to encourage the prediction of an augmented sample to be close
to this sample’s temporal average prediction during training. Bank et al. [9]] uses self-training to
train a classifier based on its own predictions if these predictions are generated with high confidence.
They use the softmax layer’s probabilities as a confidence measure and explored different methods to
assess the quality of pseudolabels such as dropout consensus and bagging.

Our work leverages the data distillation approach introduced in [2], soft pseudolabel generation for
unlabeled samples from [4]], and the loss function from [5]]. Similar to Bank et al. [9]], our work also
introduces and investigates an approach for high confidence pseudolabel selection.

5 Methods/Model

5.1 Baseline and Self-Training

Our baseline is based on the work of [[1]], but excludes the noise injection process. A teacher network
is first trained on the labeled data only and is then used to make predictions on the entire unlabeled
training dataset. These raw predictions are taken as the pseudolabels for the unlabeled data. A student
network is then trained on both the labeled and unlabelled samples. This student network becomes the
teacher network for the next iteration. In each iteration, the teacher network generates pseudolabels
offline (outside the training procedure) and a student is trained with the existing labeled samples and
the new pseudolabels for the unlabeled data. This project focuses on this pseudolabel generation step
and studies ways to select unlabeled samples that satisfy a confidence metric. These teacher-student
iterations are repeated until no further significant improvement is seen when comparing the student
and the teacher networks. (See Algorithm 1 lines 14-17 and 21-23).

We view our network as a probabilistic function f(y|z,) conditioned on the the network weights 6
and the input z. We borrow the notation used in [5]], we use x for labeled samples, u for unlabeled
samples, p for a hard label associated with a labeled sample x and ¢ for a pseudolabel associated with
unlabeled sample u. We refer by Dr to the set of all unlabelled samples available for training and by

Dy to the set of all labeled samples available for training We refer to the set of labeled data used to
train the network as X and the set of selected unlabeled data used to as &/. We note that I/ is a subset
of Dr. (All experiments used the Resnet-18 architecture shown in Fig. [T})

Jror] Jo—
e
e e e |-—25522224 o ot

b1

1d L 12 5656X56
=
o > Bt |m—.|m [P

15120808
52 “
Conv33 > BatchiNorm > Relu 1512288 Conv3d3 > BatchNorm

The last linear is of size 512x10

(where 10 is the number of classes
. A/ for both STL10 and CIFAR10)

5123t

Figure 1: Resnet-18 network used in all experiments in the report. (Figure generated with Hiddenlayer
python libary). We used the raw output from the last linear layer in the data distillation and confidence
measure pipelines. Residual networks [10] use identity layers and residual shortcuts to ease the
training of deeper networks and prevent the vanishing gradient problem

5.2 Data Augmentation and Data Distillation

For every unlabeled sample...

Augment Prediction 1

K times . . Ensemble Ensemble of all K
N : predictions

Teacher network Prediction K

Figure 2: Data distillation block

Data augmentation is leveraged in two different ways—first in data distillation: at the beginning of
each teacher-student iteration ¢, pseudolabels are generated offline for the unlabeled data (see Fig.
(). For each sample u in the unlabeled set Dr, K augmentations (X = 10 in our experiments) are
performed to get augmented versions uy for V& € 1..10. In the data distillation and data distillation
+ confidence measure experiments, each uy, is passed to the teacher network (which is the student
trained in loop ¢ — 1) to generate the corresponding output. A pseudolabel is generated by taking

the mean of all K outputs over each class distribution ¢ = & Zszl fiz1(y|ug, 0) (See Algorithm 1
(lines 9-13)).

Standard data augmentation is also performed for each training example. Specifically, for each sample
x, an augmented version z, = Augment(z) is generated and used for training. All augmentations
(during training and data distillation) consisted of random cropping (with a padding of 4) and random
horizontal flips.

5.3 Confidence-measure-based pseudolabel selection

We hypothesized that careful selection of pseudolabeled training samples based on a confidence
metric should boost the testing accuracy of trained networks compared to using all samples for
training indiscriminately. This metric is to be computed and assigned to each unlabeled sample and,
more importantly, should separate "good" and "bad" pseudolabels. To find a possible metric, we
searched for patterns in the raw prediction of a neural network for different augmented versions of
the same sample and engineered features which might be predictive and descriptive of the quality of
a pseudolabel. (These raw predictions are the output of the last fully connected layer output. This
output is not a probability distribution since no softmax layer is applied.)

Definition 1. We define a "good" pseudolabel as a vector ¢ whose maximum value is assigned to the
index corresponding to the correct class label z (i.e: argmaz(q) = z).

Of course, the correct class label for the unlabeled samples are not known. Therefore, in order
to obtain a confidence metric, we reserve samples from the labeled set/split (X)) to be used for
confidence metric calculation only. These samples are not used for training (similar to a validation
set). In this report, we refer to this subset of data as V.

5.3.1 Minimum Variance Thresholding (MVT)

For every unlabeled sample... No Disregard

sample Training set for next loop
—

Avg. prediction of
Data K predictions variance
Distillation — "
satisfy

Block Variances of each
?
nclasses threshold?
Yes Add sample to set

Figure 3: Pseudolabel selection using minimum variance thresholding

Does min

The first confidence metric that was successfully applied to the CIFAR-10 dataset is minimum
per-class variance over the data distillation output (see Fig. 3). Specifically for each sample in
Dr, we extract the output of data distillation which is a K x C matrix where K is the number of
augmentations and C' is the number of classes. The columns of this matrix are extracted to obtain C
K x 1 vectors each representing the raw predicted output for each of the C' classes. We calculate the
variance of the C' vectors to obtain a set of C' variances. The minimum of this set mw, is compared
against a threshold. An unlabeled sample is considered as a high confidence sample and used to
train the next student network if mu is less than a threshold 7" (7" = 0.01 in our experiments). (See
Algorithm 1 lines 4-8).

Using MVT increased the final testing accuracy of the trained network (see Results); however, the
threshold 7" required manual tuning. As a next step, we aimed at finding a metric that would require
less manual tuning and which is generalizable to other datasets.

5.3.2 A Confidence metric via SVM classification (CSVM)

For every unlabeled sample... %. Disregard B
Avg. prediction of sample Training set for next loop

K predictions L —

Data Does
onginin | [["o OS5l
Block threshold?
Predicted class from | Trained SVM -
each K predictions Classifier

Add sample to sclT

Yes all predicted), Yes
—

[classes the

same?

Figure 4: Pseudolabel selection using SVM and augmentation prediction agreement

Unlike MVT, CSVM requires a training step on a subset of V' before the pseudolabels are generated
for the unlabeled samples. To train the SVM, we extract the K x C' output matrix from data distillation
for each sample v; in V. The columns of the matrix are extracted to obtain C' K x 1 vectors, one for
each class. We extract two features from these vectors. The mean of each vector is calculated and the
maximum mean mm is used as the first feature. The second feature is the minimum variance mu,
calculated as described in the previous subsection. At this point, we have 4 pieces of information for
each sample v; in V: mv;, mm,, the averaged pseudolabel ¢; from data distillation and the correct
one hot hard label z;. We construct a new dataset {X, y} of size [VI from all samples in V where
X = [mw,mm] are the features and y is the label. y = 1 if argmaz(q;) = z; and y = —1 if
argmax(q;) # z;.

We attempt to sample an equal number of positive and negative examples from {X, y} to produce a
subset of data for training and testing the SVM. After training the SVM, we obtain a decision function
which given a new value X = [muv, mm] generated from an unlabeled sample in Dp, returns its
geometric margin y from the separating line L = wx + b (i.e the distance D between X and the
separating line in terms ||w||). Therefore, during pseudolabel generation, a pseudolabel is considered
higher confidence if D is greater than a threshold 7" (in our experiments 7" =1). In addition, we add a
condition before adding the pseudolabeled sample to U/ to be used when training the next student.

This condition is based on consistency regularization via data augmentation, which asserts that a
network should generate the same label for all augmentations of the same sample . Based on this
idea, we disregard all unlabeled samples for which the teacher does not predict the same class for all
K augmentations. To summarize, we use the SVM decision function to infer a confidence score for
all samples in the unlabeled set D. An unlabeled sample is considered as a high confidence sample
if D > 1. If in addition, all K augmentations of the pseudolabel agree on the predicted class, the
unlabeled sample is added to ¢/ which will be used to train the next student network. (See Fig.

5.4 Loss function and batching process

We equally balance the number of unlabeled |{'| and labeled samples |X”’| in each batch of size|B|
(|B] = |X’| + |U']). Each sample in B is selected randomly from X or I/ as follows: we generate a
random number r from a uniform distribution Z/(0, 1) and select a labeled sample if < 0.5 and an
unlabeled sample otherwise.

Our loss function is composed of an unlabelled loss term £;; and a labelled loss term £x where:
Ly = |f(y|u,) — q||3 is an L2 loss between the output distribution of the network for sample u
and the corresponding pseudolabel which is a vector of continuous values and Lx = H (p, f(y|z, 0))
is a cross entropy loss for the labeled training sample x.

We balance between the two losses using a balancing factor A to obtain our final loss function:

1 1

L=—L A L
Ei 7

We experimented with different values of A € [0.01,0.1,1] and used A = 0.1 throughout our
experiments since it performed best.

5.5 Optimization algorithm

To train our network, we used stochastic gradient descent with momentum=0.9 and weight decay=5 x
10~%. We used pytorch’s optimization package which provides 2 interfaces loss.backward() to
compute the gradients and optimizer.step() to perform the parameter update. The generic SGD
with momentum parameter update for a model with parameters #, momentum value equal to 0.9,
learning rate 7, and Loss L is

vy = 0.9v:_1 + Vo L(0)

9:9—1115

5.6 Other methods

After implementing our baseline and SVT . We first tested several confidence metrics based on
entropy and other statistical analysis using calculated variances and means with various level of
success. Manually finding such confidence metric using feature engineering was a time consuming
process and such confidence metrics may not be "optimal" . As a result, we attempted to train a
fully connected neural network to predict such a decision boundary. More precisely, we extracted [N
labeled samples from CIFAR-10 (x;,y;). For each sample. ran our data augmentation pipeline to
generate a K x C augmentation matrix A using a teacher network. The columns of A are extracted
to get C K x 1 vectors v.. A dataset (A;, z;) was constructed where z;=1 if v, = y for all ¢ and z;=0
if v, # y for any c. A fully connected neural net was trained on this dataset using a binary cross
entropy loss. Our goal was to train a NN to learn a probability p(z; = 1|A;) which will be high if the
NN believes that the A; is a good pseudolabel and predictive of the correct class. This method did
not work well or needed more time to analyze. When training this network, the training accuracy
increased while the testing accuracy decreased which is indicative that the neural network might be
overfitting and might not be learning what we intended it to learn.

6 Results

The following few tables define all of your hyperparameters and variables used to get the final results

Table 2: Parameter Definition

7 Starting learning rate
Tidee epoch learning rate decay at epochs
T)dec_rate learning rate decay rate
E Number of epochs
B Batch size
A loss balancing factor
T Threshold (Used in confidence metrics experiments)
M Max number of student teacher loops
N Number of samples reserved for usage by conlidence metrics
Nevm Minimum number of samples allowed for training and testing the SVM
Table 3: Parameters used for testing CIFAR-10 (all splits)
Method n Ndec_epoch' Ndec_rate E B A T M
CSVM 0.1 | [40, 120, 180] 0.1 250 | 64 | 0.1 | 9
MVT 0.1 | 140, 150, 350] 0.1 400 | 64 | 0.1 | 001 10
data distillation 0.1 115, 35, 65] 0.1 80 | 64 | 0.1 - 5
raw predictions 0.1 |15, 35, 65] 0.1 80 | 64 | 0.1 - 6
supervised 0.1 | [40, 120, 180] 0.1 250 | 64 | 0.1 -
For | X'| = 500, 2000, 5000, N = 100, 200, 1000, and N, = 150, 150 and 50 respectively. Tested data distillation
+ min variance only for || = 5000. Nucc cpocn Was chosen according to when the training accuracy plateaved
Table 4: Paramelers used for testing STL-10
Method 0| Miec_cpoen' | Mieerare | E | B[AT T [M| Nom
CSVM 0.01 | |40, 80] 0.1 120 | 64 | 0.1 1 10 200
data distillation 0.01 |40, 60] 0.1 80 | 64 | 0.1 10 -
supervised 0.01 |40, 80] 0.1 120 | 64 | 0.1 - - -
Tdee epoch Was chosen according to when the training accuracy plateaued

We used the testing accuracy as the evaluation metric to compare between different methods. Fig. [3]
shows the testing accuracy curves over multiple teacher-training loops for CIFAR-10 using 5,000
labeled samples. Our lower bound is the network trained on the labeled examples only and our upper
bound is the fully supervised network trained on all labeled samples in CIFAR-10. MVT (Min Var
Threshold) and CSVM (With SVM) both have a final testing accuracy that is around 3% higher
compared to using data distillation only and 6.31% higher than our baseline (training student on raw
predictions). Note that both MVT and CSVM both surpass the network trained on only the fully
labeled split by around 9%. The maximum testing accuracy for these methods is summarized in
Table@ We also tested CSVM and other methods on different labeled data splits: 500, 2000 and,
5,000 labeled samples. These tests are summarized in Fig. [6] We see that the final testing accuracy
of CSVM ("with svm" in plot) is higher across all splits. However, we notice that the performance
jump from using a confidence metric is lower (compared to training on the teachers’ raw predictions)
indicating that CSVM is sensitive to the performance of the initial teacher network. We tested CSVM
on STL-10 by first training a teacher network on all 5000 labeled samples. This network is our lower
bound and had a final testing accuracy of 78.8%. We train a network using data distillation only and
another using CSVM. CSVM surpassed data distillation by 1.13% and surpassed the initial teacher
network by 4% . (see Fig. [7). The results are summarized in table 5.

Data Distillation Min Var Threshold With Svm
100 100 100
90 920
... 80
8 70
g 60
K]
< 50
S
< loop 0O 40 loop 0 40 loop 0
@ loop 1 loop 1 loop 1
O
= 30 —— loop 2 30 —— loop 2 30 —— loop 2
20 —— loop 3 20 —— loop 3 20 —— loop 3
10 -=-- upper bound 10 -=-- upper bound 10 -=-- upper bound
----- lower bound +++=+ lower bound +++=+ lower bound
0

0 0
10 20 30 40 50 60 70 80 25 50 75 100 125 150 175 200 225 250 25 50 75 100 125 150 175 200 225 250
Epoch number Epoch number Epoch number

Figure 5: Test accuracies of different methods on CIFAR-10, where 5,000 samples were considered
labeled.

Test Accuracies (%)

©
=3

%
S

~
=)

o
S

v
)

IS
S

w
S

—— With Svm
—— Data Distillation
*x —¥— Raw Predictions
~-%- Supervised
500 2000 5000

Number of Labeled Datapoints

Method CIFAR-10 STL-10
Supervised 76.49 78.8
Raw Prediction 79,43

Data Distillation 82.36 (loop 4)

81.75 (loop 9)

Min Var Thresholding
SVM Thresholding

85.74 (loop 6)
85.48 (loop 8)

82.88 (loop 6)

Table 2: Max testing accuracy (%) of each method
on CIFAR-10 and STL-10 with 5000 labeled sam-

Figure 6: Testing accuracy of methods with differ- P
ent numbers of labeled samples from CIFAR-10.
100 Data Distillation 100 With Svm
90
LU P B P e e e e S T
g 70
8 60
£ so
< 40
g 5 =T 7T » ==
20 —— loop 2 20 — loop 2
10 _ ::;Zrabound 10 _ :z:vr;rabound
0 0

10 20 30 40 50 60
Epoch number

80

25 50 75 100 125 150 175 200 225 250
Epoch number

Figure 7: STL-10

Data Distillation

Min Var Threshold

With SVM

4.0 4.0
loop 0 loop 0 loop 0
35 —— loop 1 —— loop 1 —— loop 1
— loop 2 — loop 2 — loop 2
3.0 — loop 3 — loop 3 — loop 3
925
8
220
<
e
=15
1.0
05
00 0.0 - 0.0 T
10 20 30 40 50 60 70 80 25 50 75 100 125 150 175 200 225 250 25 50 75 100 125 150 175 200 225 250
4.0 4.0 4.0
loop 0 loop 0 loop 0
35 ——loopl | 35 ——loopl | 35 —— loop 1
— loop 2 — loop 2 — loop 2
3.0 — loop3 | 3.0 — loop3 | 30 — loop 3
025 25 25
g
220 20
8 A
F1s 151N/
. \/)
1.0 10 —
05 05
0.0 0.0

10 20 30 40 50 60 70 80
Epoch number

0.0
25 50 75 100 125 150 175 200 225 250
Epoch number

Epoch number

25 50 75 100 125 150 175 200 225 250

Figure 8: CIFAR-10 Losses. Row 1: training loss. Row 2: testing loss. Note that the training loss is
the L2 loss while testing loss is a cross entropy loss

This section gives an analysis of the two confidence metrics intro-
duced in this report: minimum variance and SVM based classifi- *

cation

7 Analysis

7.1

MVT

@

—— correct (first loop)

—— incorrect first loop)
—— carrect {final loop)

— incorrect (final loop)
=== threshold

We used the labeled samples allocated for statistical analysis to ~ ** %‘ay‘anmsi;‘gy,dn.‘\ﬂs“‘z v

calculate the variance and standard deviation of the set of mini-
mum variance thresholds for the samples that are correctly and

Threshold =0.01

Figure 9: Example distribution

the samp}es 'that were incorrectl){ glassiﬁed. Figure 6 shows the of minimum variances for cor-
two distribution for one of the training runs

rect and incorrect classification

We see that there is a clear separation between the two sets

of minimum variances: The set of correctly labeled examples

(Hcorrect = 0.099, Teorrect = 0.067) have a smaller mean and

standard deviation compared to the set of incorrectly labeled sam-

ples (incorrect = 0.13, Tincorrect = 0.084). A low and constant confidence value threshold of
0.01 was used which allowed the pipeline to disregard incorrect and low confidence samples with
higher probability which allowed the neural network to train on cleaner pseudolabels and as result
outperform networks where only data distillation is being used. It is interesting to notice that as the
number of teacher-student iterations increase, the means of the two distribution (ficorrect = 0.025,
Lincorrect = 0.05) shift closer to the selected threshold. The variance of the two distributions also
decreases (Ocorrect = 0.03, Tincorrect = 0.046). This allows the network to train on an increasing
number of highly confident unlabeled samples in addition to the labeled portion, and as a result,
increase its testing accuracy and generalization performance.

7.2 CSVM First loop Loop with max test accuracy

To analyze how well the metric used in CSVM filters wol T T T
high from low confidence predictions, we analyzed
the distance between each sample in our validation
set and the decision boundary learned in different
loops. Fig. [I0]shows histograms of these distances Lol i

for data correctly and incorrectly predicted by the B S T W T T T N B O N U)
teacher network (class y = 1 and y = —1 in our 1o
SVM respectively). We show these histograms for
two different loops for CIFAR-10 and STL-10 re-
spectively: the first loops and the loops in which the
maximum test accuracy was achieved. On these his- N il .I||.
tograms, 0 on the x-axis indicates samples located o |1||!||1- .. 2”!"0!--1- il
on or very near the decision boundary, and 1 on the Disance fom SV deckionboundry Distancefom SVM decisin boundary
x-axis indicates samples located right at our threshold - jgyre 10: Plot showing the distribution of
T. For CIFAR-10, the histogram in the first loop indi- ¢orrect teacher prediction ad incorrect teacher

cates that a decent separation was found by our SVM: prediction output by the SVM. For CIFAR-10,

most of the correctly labeled samples are above the (he data shown is from the trials with 5,000
decision boundary, and many of those samples fall japeled samples.

at or above our threshold. This indicates that our

approach successfully selected high confidence pseu-

dolabels for the first loop on CIFAR-10. By the later loop, our approach still has a decent separation
between the correct and incorrectly predicted samples by the teacher, and many of these points fall
above our threshold as well. In STL-10, the histogram from the first loop shows that the decision
boundary learned was not as successful at separating the data into the correct and incorrect classes
as in CIFAR-10; however, the threshold being at 1 enabled our approach to still select samples
with correct pseudolabels, as few incorrect predictions surpassed the threshold. In the later loop for
STL-10, more of the distribution from the correctly predicted set falls above the decision boundary,
allowing our approach to select more of the correctly predicted samples. As in the first loop, our
threshold appears to only select a small amount of incorrect pseudolabels. When comparing between
the first and later loops for both datasets, the distribution of samples seems to spread out in later loops.
This indicates that our teacher is predicting more samples with higher confidence.

CIFAR-10
Number of samples

STL-10
Number of samples.
®
&

8 Conclusion and Future Work

In this project we explored different recent ideas in SSL and constructed confidence metric for offline
high confidence pseudolabel generation. We demonstrated on two different datasets how using a
confidence metric increased the accuracy and generalization ability of the final model. We note that
the performance boost of CSVM in STL10 was less important compared to CIFAR-10. This might
be indicative that the features used to train the SVM model might have to be revisited to provide
better generalization across datasets. One main assumption and limitations is that we restricted our
confidence metric search to metrics that allow linear separation of samples. A direction for future
work would be to perform more rigorous analysis of possible features that can be extracted using
data augmentation and data distillation . This idea can also be tested using non-linear classification
techniques that could capture more interesting patterns in the raw prediction of a neural network.

References

[1] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy student
improves imagenet classification. 2019.

[2] Ilija Radosavovic, Piotr Dolldr, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data
Distillation: Towards Omni-Supervised Learning. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 6 2018.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25,
2012.

[4] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network.
2015.

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. MixMatch: A Holistic Approach to Semi-Supervised Learning. In Advances in Neural
Information Processing Systems 32, 2019.

[6] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. CoRR, abs/1710.09412, 2017.

[7] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning. In Advances in Neural Information
Processing Systems 29. 2016.

[8] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. CoRR,
abs/1610.02242, 2016.

[9] Dor Bank, Daniel Greenfeld, and Gal Hyams. Improved training for self training by confidence
assessments. In Intelligent Computing, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

	Introduction
	Data
	Background
	Related Work
	Methods/Model
	Baseline and Self-Training
	Data Augmentation and Data Distillation
	Confidence-measure-based pseudolabel selection
	Minimum Variance Thresholding (MVT)
	A Confidence metric via SVM classification (CSVM)

	Loss function and batching process
	Optimization algorithm
	Other methods

	Results
	Analysis
	MVT
	CSVM

	Conclusion and Future Work

